If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2=99
We move all terms to the left:
v^2-(99)=0
a = 1; b = 0; c = -99;
Δ = b2-4ac
Δ = 02-4·1·(-99)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*1}=\frac{0-6\sqrt{11}}{2} =-\frac{6\sqrt{11}}{2} =-3\sqrt{11} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*1}=\frac{0+6\sqrt{11}}{2} =\frac{6\sqrt{11}}{2} =3\sqrt{11} $
| q/7+43=49 | | 10f+16=86 | | 53=r/9+46 | | 42-j=27 | | f/6-5=2 | | 4^(7x)=2^(60)*16^((x)/(2)) | | 2t-41=47 | | b/5+21=27 | | 5r+18=48 | | 8=56/q | | 32/g=8 | | 18=r/3+11 | | 2c-29=47 | | r/9-3=1 | | 7=35/k | | 23-7x=3x+ | | u/3=73 | | 2+5.1r=8-4.9r | | 120=-6(-4-8p) | | 568=-8(8x-7) | | 15+6y=20 | | 2=5d=67 | | 4b3-100b=0 | | 10q=100.000 | | -9x=-20.7 | | 10g-11g+g=6 | | 1.6x=-12.8 | | 10b-2=76 | | 14/x=-3.5 | | 10.8v+2.7=16.74 | | -3=-9p+1.5 | | 8q-2.1=16.3 |